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Abstract. We complete here our work on isospin violation in the K → 3π system. We first calculate
K → 2π to the same order as we did K → 3π in papers I and II of this series. This adds the effects of
order G27p

2(mu − md) and G27p
2e2 to earlier work. We calculate also the lowest order bremsstrahlung

contributions, K → 2πγ, 3πγ. With these and our earlier results we perform a full fit to all available
CP -conserving data in the K → 2π, 3π system including isospin violation effects. We perform these fits
under various input assumptions as well as test the factorization and the vector dominance model for the
weak NLO low energy constants.

PACS. 13.20.Eb, 12.39.Fe, 14.40.Aq, 11.30.Rd

1 Introduction

Low-energy QCD is non-perturbative, which calls for alter-
native methods of calculating processes including compos-
ite particles such as mesons and baryons. A method used to
describe the interactions of the light pseudoscalar mesons
(K, π, η) is chiral perturbation theory (ChPT). It was first
presented by Weinberg, Gasser and Leutwyler [1–3] and
it has been very successful. Pedagogical introductions to
ChPT can be found in [4]. The theory can be extended to
also cover the weak interactions of the pseudoscalars, first
done in [5].

The first calculation of a kaon decaying into pions
(K → 2π, 3π) was presented in [6], and reviews of other
applications of ChPT to non-leptonic weak interactions
can be found in [7].

The details from [6] were lost, but a recalculation in
the isospin limit of K → 2π to next-to-leading order was
made in [8, 9] and of K → 3π in [9, 10]. In [9] a full fit
to all experimental data existing at the time was made,
and it was found that the decay rates and linear slopes
agreed well. However, a small discrepancy was found in
the quadratic slopes, and this can have several different
origins. It could be an experimental problem or it could
have a theoretical origin. In the latter case the corrections
to the amplitude calculated in [9] are threefold: strong
isospin breaking, electromagnetic (EM) isospin breaking
or higher-order corrections.

� Supported in part by the European Union TMR network,
Contract No. HPRN-CT-2002-00311 (EURIDICE).

In [11] the strong isospin and local electromagnetic cor-
rections were investigated and it was found that the in-
clusion of those led to changes of a few percent in the
amplitudes. The local electromagnetic part was also calcu-
lated in [10], in full agreement with our result after sorting
out some misprints in [10], corrected in [12]. In [13] the
radiative corrections were added, which means that the
full effects of isospin breaking were studied. This led to
changes in the amplitudes of order 5–10 percent. Note that
the results in [13] disagree numerically with the results for
K+ → π0π0π+ of [14].

To answer the question whether isospin breaking re-
moves the problem of fitting the quadratic slopes, a new
full fit has to be done. That is the main result in this pa-
per, and in this new fit we also include new experimental
data [15, 16]. We also present recalculations of the ampli-
tudes K → 2π, K → 2πγ and K → 3πγ, all calculated
to next-to-leading order and including first order isospin
breaking, i.e. we include contributions proportional to p2,
m2, e2, mu − md (leading order), and p4, p2m2, m4, p2e2,
m2e2, p2(mu − md) and m2(mu − md) (next-to-leading
order). The corrections needed to be added to determine
ππ scattering lengths from K → 3π [17] are beyond the
order calculated in this paper.

The outline of this paper is as follows. The next section
describes isospin breaking inmore detail. In Sect. 3 the basis
of ChPT, the chiral Lagrangians, are discussed. Section 4
specifies the decays and describes the relevant kinematics.
The divergences appearing when including photons are
discussed in Sect. 5. In Sect. 6 the analytical results are
discussed, Sect. 7 contains the numerical results and the
last section contains the summary.
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2 Isospin breaking

Isospin symmetry is the SU(2) symmetry under the ex-
change of up- and down-quarks. This symmetry is only
exact in the approximation that mu = md and electro-
magnetism is neglected, i.e. in the isospin limit. Calcula-
tions are sometimes performed in the isospin limit since
this is simpler and gives a good first estimate of the re-
sult. However, to get a more accurate result one should
include the effects from mu �= md and electromagnetism,
i.e. isospin breaking.

The two different sources of isospin breaking give rise
to different effects. Strong isospin breaking, coming from
mu �= md, include mixing between π0 and η. This mixing
leads to changes in the formulas for both the physicalmasses
ofπ0 and η aswell as the amplitude for anyprocess involving
either of the two. For a detailed discussion see [18].

The other source, electromagnetic isospin breaking,
coming from the fact that the up- and the down-quarks
are charged, implies interactions with photons. This means
both the addition of new Lagrangians at each order, as well
as the introduction of new diagrams including explicit pho-
tons.

3 The ChPT Lagrangians

The basis of our ChPT calculation is the various chiral
Lagrangians of relevant orders. We work to leading order
in mu − md and e2 but next-to-leading order in p2 and
m2. For simplicity we call in the remainder terms of order
p2, m2, e2, mu − md leading order and terms of order p4,
p2m2, m4, p2e2, m2e2, p2(mu − md) and m2(mu − md)
next-to-leading order.

3.1 Leading order

The lowest order chiral Lagrangian is divided in three parts

L2 = LS2 + LW2 + LE2 , (1)

where LS2 refers to the strong ∆S = 0 part, LW2 the weak
∆S = ±1 part, and LE2 the strong–electromagnetic and
weak–electromagnetic parts combined. For the strong part
we have [2]

LS2 =
F 2

0

4
〈uµuµ + χ+〉 . (2)

Here 〈A〉 stands for the flavor trace of the matrix A, and
F0 is the pion decay constant in the chiral limit. We define
the matrices uµ, u and χ± as

uµ = iu†DµUu† = u†
µ , u2 = U , χ± = u†χu† ± uχ†u ,

(3)
where the special unitary matrix U contains the Goldstone
boson fields

U = exp

(
i
√

2
F0

M

)
,

M =


1√
2
π3 + 1√

6
η8 π+ K+

π− −1√
2
π3 + 1√

6
η8 K0

K− K0 −2√
6
η8

 . (4)

We use the formalism of the external field method [2], and
to include photons we set

χ = 2B0

mu

md

ms

 , (5)

and
DµU = ∂µU − ieQAµU + ieUQAµ , (6)

where Aµ is the photon field and

Q =

2/3
−1/3

−1/3

 . (7)

The quadratic terms in (2) are diagonalized by a rotation

π0 = π3 cos ε + η8 sin ε ,

η = −π3 sin ε + η8 cos ε , (8)

where the lowest order mixing angle ε satisfies

tan(2ε) =
√

3
md − mu

2ms − mu − md
. (9)

The weak, ∆S = 1, part of the Lagrangian has the
form [19]

LW2 = CF 4
0 [G8〈∆32uµuµ〉 + G′

8〈∆32χ+〉
+G27t

ij,kl〈∆ijuµ〉〈∆klu
µ〉]+ h.c.

The tensor tij,kl has as non-zero components

t21,13 = t13,21 =
1
3

, t22,23 = t23,22 = − 1
6

,

t23,33 = t33,23 = − 1
6

, t23,11 = t11,23 =
1
3

,

(10)

and the matrix ∆ij is defined as

∆ij ≡ uλiju
† , (λij)ab ≡ δiaδjb . (11)

The coefficient C is defined such that in the chiral and
large Nc limits G8 = G27 = 1,

C = − 3
5

GF√
2

VudV
∗
us = −1.06 · 10−6GeV−2 . (12)

Finally, the remaining electromagnetic part, relevant for
this calculation, looks like (see e.g. [20])

LE2 = e2F 4
0 Z〈QLQR〉 + e2F 4

0 〈ΥQR〉 , (13)

where the weak–electromagnetic term is multiplied by a
constant GE (gewkG8 in [20]),

Υ = GEF 2
0 ∆32 + h.c. (14)

and
QL = uQu† , QR = u†Qu . (15)
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3.2 Next-to-leading order

Chiral perturbation theory is a non-renormalizable theory.
Thismeans that new termshave to be added at each order to
compensate for the divergences coming from loop diagrams.
Thus the Lagrangians increase in size for every new order
and the number of free parameters rises as well. At next-
to-leading order the Lagrangian is split in four parts which,
in obvious notation, are

L4 = LS4 + LW4 + LS2E2 + LW2E2(G8) . (16)

The notation (G8) indicates that here only the dominant
G8 part is included in the Lagrangian and therefore in
the calculation.

The Lagrangians of next-to-leading order are quite large
and we will not write them explicitly here since they can
be found in many places [2, 5, 20–24]. For a list of all the
pieces relevant for this specific calculation see [11,13]. Note
however that one contributing term was forgotten when
writing LS2E2 in [11], namely

− ie2F 2
0 K12 (17)

×
〈(

∇̂µQLQL − QL∇̂µQL − ∇̂µQRQR + QR∇̂µQR

)
uµ
〉

,

where

∇̂µQL = ∇µQL +
i
2

[uµ, QL] = uDµQLu†,

∇̂µQR = ∇µQR − i
2

[uµ, QR] = u†DµQRu . (18)

It contributes to the calculation of the decay constants,
Fπ+ and FK+ . It only contributes to the amplitudes of
K → 2π and K → 3π via the rewriting of the lowest order
in terms of Fπ+ and FK+ rather than F0.

3.2.1 Ultraviolet divergences

The processes K → 2π and K → 3π receive higher-order
contributions from diagrams that contain loops. The study
of these diagrams is complicated by the fact that they
need to be precisely defined. The loop diagrams involve an
integration over the loop-momentum Q, and the integrals
are divergent in the ultraviolet region, i.e. when Q → ∞.
These ultraviolet divergences are canceled by replacing the
coefficients, Xi, in the next-to-leading order Lagrangians
by the renormalized coefficients, Xr

i , and a subtraction
part. See [9, 11] and references therein.

4 Kinematics

4.1 K → 2π and K → 2πγ

In the limit of CP -conservation, there are three different
decays of the type K → 2π (K− decays are not treated
separately since they are counterparts to the K+ decays):

KS(k) → π0(p1)π0(p2) [AS
00] ,

KS(k) → π+(p1)π−(p2) [AS
+−] , (19)

K+(k) → π+(p1)π0(p2) [A+0],

where we have indicated the four-momentum defined for
each particle and the symbol used for the amplitude. With
an external photon it changes to

KS(k) → π0(p1)π0(p2)γ(q) [AS
00γ ] ,

KS(k) → π+(p1)π−(p2)γ(q) [AS
+−γ ] , (20)

K+(k) → π+(p1)π0(p2)γ(q) [A+0γ ] .

The kinematics for K → 2πγ is treated using

r0 ≡ −k · q , r1 ≡ p1 · q , r2 ≡ p2 · q , (21)

where
r0 + r1 + r2 = 0 . (22)

4.2 K → 3π and K → 3πγ

For the corresponding process K → 3π, there are five
different decays:

KL(k) → π0(p1)π0(p2)π0(p3) [AL
000] ,

KL(k) → π+(p1)π−(p2)π0(p3) [AL
+−0] ,

KS(k) → π+(p1)π−(p2)π0(p3) [AS
+−0] , (23)

K+(k) → π0(p1)π0(p2)π+(p3) [A00+] ,

K+(k) → π+(p1)π+(p2)π−(p3) [A++−] ,

and here the variables are

s1 ≡ (k − p1)
2

, s2 ≡ (k − p2)
2

, s3 ≡ (k − p3)
2

,
(24)

where
s1 + s2 + s3 = k2 + p2

1 + p2
2 + p2

3 . (25)

The amplitudes are expanded in terms of the Dalitz plot
variables x and y defined as

y =
s3 − s0

m2
π+

, x =
s2 − s1

m2
π+

, s0 =
1
3

(s1 + s2 + s3) .

(26)
With an external photon the decays are

KL(k) → π0(p1)π0(p2)π0(p3)γ(q) [AL
000γ ] ,

KL(k) → π+(p1)π−(p2)π0(p3)γ(q) [AL
+−0γ ] ,

KS(k) → π+(p1)π−(p2)π0(p3)γ(q) [AS
+−0γ ] , (27)

K+(k) → π0(p1)π0(p2)π+(p3)γ(q) [A00+γ ] ,

K+(k) → π+(p1)π+(p2)π−(p3)γ(q) [A++−γ ] ,

where the kinematics is treated using

s1γ ≡ (k − p1)
2

, s2γ ≡ (k − p2)
2

, s3γ ≡ (k − p3)
2

,
(28)
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t0 ≡ −k · q , t1 ≡ p1 · q , t2 ≡ p2 · q , t3 ≡ p3 · q ,
(29)

where
t0 + t1 + t2 + t3 = 0 (30)

and

s1γ + s2γ + s3γ = k2 + p2
1 + p2

2 + p2
3 − 2t0 . (31)

5 Infrared divergences

Beside the ultraviolet divergences which are removed by
renormalization of the higher-order coefficients, diagrams
including photons in the loops contain infrared (IR) diver-
gences. These infinities come from the Q → 0 end of the
loop-momentum integrals. They are handled by including
also the bremsstrahlung process, where a real photon is
radiated off one of the charged mesons. It is only the sum
of the virtual loop corrections and the real bremsstrahlung
which is physically significant and thus needs to be well de-
fined.

We regulate the IR divergences in both the virtual pho-
ton loops and the real emission with a photon mass mγ and
keep only the singular terms plus those that do not vanish
in the limit mγ → 0. We include the real bremsstrahlung
for photon energies up to a cut-off ω and treat it in the
soft-photon approximation.

The exact form of the amplitude squared for the brems-
strahlung depends on which specific amplitude that is being
calculated. For a detailed presentation of the calculation
and resulting expressions for K → 3π see [13]. The corre-
sponding amplitudes for K → 2π are

|AS
00|2BS = 0 , (32)

|AS
+−|2BS = −|AS

+−|2LO
e2

4π2

×
[
log

ω2

m2
γ

− IIR
(
m2

π, m2
π, m2

K

)]
, (33)

|A+0|2BS = −|A+0|2LO
e2

4π2

×
[
log

ω2

m2
γ

− IIR
(
m2

π, m2
K , m2

π

)]
, (34)

where

IIR
(
m2

1, m
2
2, m

2
3
) ≡ − xs

4π2

m2
3 − m2

1 − m2
2

m1m2(1 − xs)
log xs log

ω2

m2
γ

.

(35)
When using these expressions, the divergences from the
photon loops cancel exactly.

A similar problem shows up in the definition of the
decay constants, since we normalize the lowest order with
Fπ+ and FK+ . See [13] for details.

6 Analytical results

6.1 K → 2π

The most complete work on isospin violation in K → 2π
is in [25]; earlier work can be found in [26].

6.1.1 Lowest order

There is only one diagram contributing to the decay K →
2π at lowest order; see top left in Fig. 1, and the resulting
amplitudes are also quite simple. To first order in isospin
they can be written

AS
00 = i

CF 4
0

F 2
πFK

(G8 − G27)

×
(

4
sin ε√

3

(
m2

π − m2
K

)− 2m2
π0 + 2m2

K0

)
, (36)

AS
+− = i

CF 4
0

F 2
πFK

G8
(−2m2

π+ + 2m2
K0

)
(37)

+i
CF 4

0

F 2
πFK

G27

(
− 4

3
m2

π+ +
4
3

m2
K+

)
− 2iF 3e2GE ,

A+0 = i
CF 4

0

F 2
πFK

G8

×
(

−2
sin ε√

3
m2

π + 2
sin ε√

3
m2

K − m2
π+ + m2

π0

)
+iFG27

(
−3

sin ε√
3

m2
π + 3

sin ε√
3

m2
K − 7/3m2

π+

+2/3m2
π0 + 5/3m2

K+

)
− iF 3e2GE . (38)

See Sect. 7.1.1 for a discussion of the masses used.

6.1.2 Next-to-leading order

There are seven more diagrams contributing to next-to-
leading order; see Fig. 1. The resulting amplitudes are long,
and we decided to not include them here but instead make
them available for download [27]. Note that we have also
included contributions proportional to G27, not included
in [25]. These are included for consistency between the
K → 2π(γ) and K → 3π(γ) calculations.

Fig. 1. The diagrams for K → 2π. An open square is a vertex
from LW4 or LW2E2, a filled square a vertex from LW2 or
LE2(∆S = 1) and a filled circle a vertex from LS2 or LE2(∆S =
0). A straight line is a pseudoscalar meson and a wiggly line
a photon
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Fig. 2. The diagrams for K → 2πγ. A square is a weak vertex,
a circle a strong vertex, a straight line a pseudoscalar meson
and a wiggly line a photon

6.2 K → 2πγ

The amplitudes for the processes K → 2πγ have been
calculated before. Here we only need the lowest order con-
tribution to be consistent with the K → 2π calculation.
This we recalculated and the starting point is the two di-
agrams that contribute to the process, shown in Fig. 2.

Since photons at this order only couple to charged par-
ticles, there are only two different amplitudes and the re-
sults are

AS
+−γ = eC̃

(
G8 +

2
3

G27

)(
m2

K − m2
π

)
(39)

×
[
−k.ε

(
1
r1

− 1
r2

)
+ (p2.ε − p1.ε)

(
1
r1

+
1
r2

)]
,

and

A+0γ = eC̃
5
6

G27
(
m2

K − m2
π

)
×
[
−k.ε

(
1
r0

+
1
r1

)
+ p1.ε

(
− 1

r0
− 1

r1

)

+ p2.ε

(
− 1

r0
+

1
r1

)]
, (40)

with C̃ = CF 4
0 /(F 2

πFK). These amplitudes can be decom-
posed into an electric and a magnetic part:

A(K → 2πγ) = eεµ(k)(Eµ + εµνρσMνρσ) , (41)

but at lowest order the magnetic amplitude Mνρσ vanishes
since there is no εµνρσ tensor in the corresponding lowest
order Lagrangian.

The electric amplitude, on the other hand, is completely
determined by the corresponding non-radiative amplitude
via Low’s theorem [28].

6.3 K → 3πγ

The decay K → 3πγ is discussed in detail in [29]. We
only need the lowest order amplitude for consistency with
the calculation of K → 3π. We have calculated the four
different amplitudes using chiral perturbation theory, and
checked that they agree with Low’s theorem. The calcu-
lation is based on seven diagrams; see Fig. 3. The four

Fig. 3. The diagrams for
K → 3πγ. A square is
a weak vertex, a circle a
strong vertex, a straight line
a pseudoscalar meson and a
wiggly line a photon

amplitudes are

AL
+−0γ = iC̄e

[
G8 − G27

3
m2

K

+
(

− G8

3
− G27

6
−3m2

K + 8m2
π

m2
π − m2

K

)
× (−3(s3γ − 2t1 − 2t2) + m2

K + 3m2
π

)
×
(

p1 · ε

t1
− p2 · ε

t2

)

−6
(

− G8

3
− G27

6
−3m2

K + 8m2
π

m2
π − m2

K

)

× (t2 + t1)
(

p1 · ε

t1
− p2 · ε

t2

)]
, (42)

AS
+−0γ = iC̄e

5
6

(
− G27

m2
π − m2

K

)(
2m2

π − 3m2
K

)
×
[
(s1γ − s2γ)

(
p1 · ε

t1
− p2 · ε

t2

)
(43)

+ 2t0

(
p1 · ε

t1
+

k · ε

t0

)
+ 2t0

(
p2 · ε

t2
+

k · ε

t0

)]
,

A00+γ = iC̄e

[
− G8

2
(
m2

K + m2
π

)
− G27

m2
π − m2

K

(
5/3m2

πm2
K − 13/6m4

π + 1/2m4
K

)
−
(

G8

2
+

G27

m2
π − m2

K

(
7/6m2

π − 17/6m2
K

))
× (2(s3γ − 2t1 − 2t2) − m2

K − 3m2
π

)
− G27

m2
π − m2

K

5/6
(
2m2

π − 3m2
K

)
× (−(s3γ − 2t1 − 2t2) + m2

K + 3m2
π

)]

×
(

k · ε

t0
+

p3 · ε

t3

)
(44)
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A++−γ = iC̄e

[(−G8
(
m2

π + m2
K

)
+G27

(
m2

K + 13/3m2
π

)
+ (G8 − 13/3G27)(s3γ − 2t1 − 2t2))

×
(

k · ε

t0
+

p1 · ε

t1
+

p2 · ε

t2
− p3 · ε

t3

)
(45)

+ (2G8 − 26/3G27)(t2 − t1)
(

p1 · ε

t1
− p2 · ε

t2

)]
,

with C̄ = CF 4
0 /(F 3

πFK). Once again, these amplitudes can
be decomposed into an electric and a magnetic part:

A(K → 3πγ) = eεµ(k)(Eµ + εµνρσMνρσ) , (46)

and the magnetic amplitude Mνρσ vanishes for the reasons
given above.

The electric amplitude at this order is again completely
determined by the corresponding non-radiative amplitude
A(s, ν) via Low’s theorem [28,29]:

Eµ = A(s, ν)Σµ

+ 2
∂A(s, ν)

∂s
Λµ

12 +
∂A(s, ν)

∂ν
(Λµ

14 − Λµ
24)

+ O(k), (47)

with (the meson charges in units of e are denoted qi, with∑4
i=1 qi = 0)

s = (p1 + p2)2,

ν = k · (p1 − p2),

Σµ =
4∑

i=1

qip
µ
i

ti
,

Λµ
ij = Λµ

ji = (qitj − qjti)D
µ
ij ,

Dµ
ij = −Dµ

ji =
pµ

i

ti
− pµ

j

tj
. (48)

Since there are no terms of O(k) at lowest order in the
chiral expansion, the leading-order electric amplitude is
completely determined by the explicit terms in (47).

7 Numerical results

7.1 Experimental data and input

For the numerical studies we use the input given in Table 1.

7.1.1 Strong and electromagnetic input

There are different ways to treat the masses, especially in
the isospin limit case. In [9] the masses used in the phase

Table 1. The various input values used, LECs given
at µ = 0.77 GeV

GE −0.4 Lr
1 0.38 · 10−3

sin ε 1.19 · 10−2 Lr
2 1.59 · 10−3

Z 0.805 Lr
3 −2.91 · 10−3

Fπ 0.0924 GeV Lr
4 0

FK 0.113 GeV Lr
5 1.46 · 10−3

N14 −10.4 · 10−3 Lr
6 0

N15 5.95 · 10−3 Lr
7 −0.49 · 10−3

D13 0 Lr
8 1.0 · 10−3

D15 0 Lr
9 7.0 · 10−3

space were obtained from the physical masses occurring in
the decays. However, in the amplitudes the physical mass of
the kaon involved in the process was used and the pion mass
was given by m2

π = 1
3

∑
i=1,3 m2

πi with i = 1, 2, 3 being the
three pions participating in the reaction. This allowed for
the correct kinematical relation s1+s2+s3 = m2

K +3m2
π to

be satisfied while having the isospin limit in the amplitude
but the physical masses in the phase space. The results
in [9] were obtained with the physical mass for the eta.
Results with the Gell-Mann–Okubo (GMO) relation for
the eta mass in the loops gave small changes within the
general errors given in [9].

In the decays here, we work to first order in isospin
breaking. We have rewritten explicit factors of mu − md

in terms of sin ε according to

mu − md = − 1√
3

(2ms − mu − md) sin ε . (49)

In general we use the physical masses of pions and kaons
in the loops but as soon as a factor of sin ε or e2 is present
we use a common kaon and a common pion mass. This
simplifies the analytical formulae enormously. The kaon
mass chosen is the mass from the kaon in the decay and
the pion mass used is 3m2

π =
∑

i m2
πi with i = 1, 2, 3 the

three pions in the final state, i.e. the mass we used in the
isospin limit case. For the eta mass we use in general the
physical mass in the loop integrals. We have used the GMO
mass relation with isospin violation included,

m2
η =

2
3
(
m2

K+ + m2
K0 − m2

π+

)
+

1
3

m2
π0 , (50)

to simplify the amplitudes, except in the loops as stated
above. The possible lowest order contributions from the
eta mass have been removed from the amplitudes using the
corresponding next-to-leading order relation as described
in [11].

The strong LECs, Lr
1 to Lr

8, as well as sin ε come from
the one-loop fit in [18], Lr

9 from [30] and the GE estimate
is from [31].

The constant Z from LE2 we estimate via

Z =
1

2F 2
πe2

(
m2

π+ − m2
π0

)
, (51)

which corresponds to the value in Table 1. The higher-order
coefficients of LE4, Kr

1 , . . . , Kr
12, are rather unknown. Some
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rough estimates exist but we put them to zero here, at the
relevant scale.

The IR divergences are canceled by adding the soft-
photon bremsstrahlung. We have used a 1 MeV cut-off in
energy for this and used the same cut-off in the definition of
Fπ+ and FK+ . We also use mγ = 1 MeV, which effectively
removes the infrared part.

The subtraction scale µ is chosen to be 0.77 GeV unless
stated otherwise.

7.1.2 Input relevant for the photon reducible diagrams

The two constants D13 and D15 are set to zero since no
knowledge exist of their values. One can determine the
constants N14 and N15 from K → πl+l− decays. For a
detailed analysis, see [13]. The resulting values are given
in Table 1. Note however that as described in [13], D13,
D15, N14 and N15 only contributes via the photon reducible
diagrams.These diagrams are negligible numerically, unless
the constants are orders of magnitude larger than expected.

7.2 Bremsstrahlung and dependence on mγ and ω

The isospin breaking amplitudes for K → 2π and K → 3π
both depend on mγ , introduced to regularize the infrared
divergences coming from loops containing photons. This
mγ-dependence is canceled by adding the bremsstrahlung
amplitudes, where a real soft photon is radiated off one
of the mesons. This cancellation was checked for K → 3π
in [13], and we have now also checked it for K → 2π.

However, after the addition of bremsstrahlung the decay
rates depend instead on ω, the cut-off energy of the radiated
real photon. This is a parameter that should be set to a
value depending on the experiment that one compares to.

Another possibility, which we use in this paper, is to add
the full amplitudes with an extra radiated photon, K →
2πγ and K → 3πγ. When doing that the decay rates should
be independent of ω. We have checked this numerically and
the results are presented in Table 2. For this comparison we
have chosen mγ = 0.1 MeV and varied omega over a large
range. One can see that up to photon energies of 1 MeV,
the sum is constant within the expected uncertainties. The
different sum when including energies up to 10 MeV is
an indication that the soft-photon approximation, used in
calculating the infrared contribution, is breaking down.

The way we treated the bremsstrahlung contribution in
the fits is as follows. We assume that the measured decay
widths are including all photons. To compare to our am-
plitudes (calculated without hard photons), we therefore
subtract numerically the calculated hard photon contribu-
tions from the experimental numbers.

7.3 Fit to K → 2π

The process K → 2π in the presence of isospin breaking
has been discussed in detail in [25]. We have reproduced
that calculation but added in addition also all the isospin

Table 2. K → 2, 3π decay rates calculated for different values
on ω. Here we use mγ = 0.1 MeV and the same value is used
as a cut-off in the decay constants; see the appendix in [13]

ω (GeV) IR photon Extra photon Sum (GeV)
(GeV) (GeV)

KS → π+π−

0.01 4.34 · 10−17 1.59 · 10−17 5.92 · 10−17

0.001 2.17 · 10−17 3.69 · 10−17 5.86 · 10−17

0.0005 1.52 · 10−17 4.34 · 10−17 5.85 · 10−17

0.0001 0 5.85 · 10−17 5.85 · 10−17

K+ → π+π0

0.01 4.30 · 10−20 1.54 · 10−20 5.84 · 10−20

0.001 2.15 · 10−20 3.61 · 10−20 5.77 · 10−20

0.0005 1.50 · 10−20 4.26 · 10−20 5.76 · 10−20

0.0001 0 5.77 · 10−20 5.77 · 10−20

KL → π+π−π0

0.01 2.39 · 10−21 3.39 · 10−22 2.73 · 10−21

0.001 1.19 · 10−21 1.39 · 10−21 2.58 · 10−21

0.0005 8.34 · 10−22 1.74 · 10−21 2.58 · 10−21

0.0001 0 2.56 · 10−21 2.56 · 10−21

KS → π+π−π0

0.01 5.88 · 10−24 8.93 · 10−25 6.77 · 10−24

0.001 2.94 · 10−24 3.43 · 10−24 6.37 · 10−21

0.0005 2.05 · 10−24 4.28 · 10−24 6.34 · 10−21

0.0001 0 6.29 · 10−24 6.29 · 10−24

K+ → π0π0π+

0.01 3.77 · 10−22 4.03 · 10−23 4.18 · 10−22

0.001 1.89 · 10−22 1.98 · 10−22 3.86 · 10−22

0.0005 1.32 · 10−22 2.53 · 10−22 3.85 · 10−22

0.0001 0 3.83 · 10−22 3.83 · 10−22

K+ → π+π+π−

0.01 5.05 · 10−21 5.86 · 10−22 5.63 · 10−21

0.001 2.52 · 10−21 2.73 · 10−21 5.25 · 10−21

0.0005 1.76 · 10−21 3.46 · 10−21 5.23 · 10−21

0.0001 0 5.19 · 10−21 5.19 · 10−21

breaking contributions from the 27 amplitudes, except for
the parts from the weak–electromagnetic 27 Lagrangian.

The isospin breaking corrections to the decay rates are
rather small, but they have an impact on the phase shift
between the I = 2 and I = 0 amplitudes, δ2 − δ0, as
described in detail in [25]. Our results are compatible with
the ones presented there. The phase shift we use here is
defined via

AS
00 =

√
2√
3

A0 − 2√
3

A2 ,

AS
+− =

√
2√
3

A0 +
1√
3

A2 ,

A+0 =
√

3
2

A+
2 ,
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Table 3. Quantities fitted from K → 2π only. The scale µ is
the scale at which the unknown low energy constants are put
to zero

K → 2π

Order µ [GeV] G8 G27 δ2 − δ0

LO 10.4 0.55 −60.3◦

NLO 0.6 6.43 0.44 −58.9◦

NLO 0.77 5.39 0.36 −58.0◦

NLO 1.0 4.60 0.30 −57.4◦

A2

A0
=
∣∣∣∣A2

A0

∣∣∣∣ ei(δ2−δ0) . (52)

In the fits we have left δ2 − δ0 as an additional free param-
eter, as it is known that this phase is badly reproduced at
one-loop order in ChPT. Note that because of the isospin
breaking the A+

2 amplitude is different from A2.
We have performed a lowest order and a NLO fit to only

the K → 2π amplitudes. In the NLO fit we set all the extra
parameters, K̃i = Kr

i = Zr
i = 0 at the scale µ indicated.

The bremsstrahlung contribution has been subtracted as
discussed above.

As can be seen in Table 3, there is a sizable variation
depending on the input scale used. There is very little
change in the absolute values ofG8 andG27 compared to the
isospin limit fit of [9], where only the fit with µ = 0.77 GeV
was done. The angle is similar to the fit there, but this
is a combination of two different effects. It was lowered
because the new KLOE data have now been included in
thePDGaveraging, but the isospin breaking effects induced
a positive correction as was also found in [25].

The values of G8 and G27 are determined by fitting
CF 4

0 G8 and CF 4
0 G27 and then setting F0 = Fπ numerically

to provide the numbers in the tables.

7.4 Fit to K → 2π and K → 3π

The quantities we fit are the measured decay rates and
the various parameters of the Dalitz plot distributions de-
fined via ∣∣∣∣A(s1, s2, s3)

A(s0, s0, s0)

∣∣∣∣2 = 1 + gy + hy2 + kx2 . (53)

For the decay KL → 3π0, k = h/3 and g = 0. The decay
Ks → π+π−π0 is included via

AS
+−0 = γSx − ξxy . (54)

The decay rates are included in the fit as follows. We
subtract from the decay rates the bremsstrahlung contri-
butions as described above as a function of G8 and G27.
We then convert the decay rate using the central values
of the measured Dalitz plot distribution into a value for
the amplitude squared at the center of the Dalitz plot.
These squared amplitudes together with the parameters
g, h, k and γS are used as the 18 experimental parameters
to be fitted.

This means that the effect of bremsstrahlung is included
fully in the decay rates, but only via the soft-photon ap-
proximation with a 1 MeV cut-off for the Dalitz plot distri-
butions. We have not included the preliminary data from
KTeV, NA48 and KLOE.

The number of free input parameters on the theory side
is very large. Since it turns out that the isospin breaking
effects are very small, we put those extra NLO parameters
equal to zero at the scale µ indicated in the tables.

Let us repeat here the definitions of the various extra
NLO parameters. The Lr

i are taken from the standard
fit done at one loop to be compatible with the order of
this calculation. The Kr

i are the extra parameters at NLO
in the p2e2 sector. Those are always put to zero at the
scale indicated. In the isospin limit 11 combinations of the
weak NLO low energy coefficients show up, as discussed
in [9]. These are K̃i, i = 1, . . . , 11. In the presence of isospin
breaking many more combinations of these, as well as from
theweak octet order e2p2 Lagrangian, emerge and theywere
classified in [11]. The 27-part of the weak Lagrangian of
order e2p2 has not been worked out and will lead to some
more free parameters. We have not used any estimates of
these extra parameters but set all of them to zero at the scale
indicated, except for K̃i, i = 1, . . . , 7. The reason for this
choice is that they are the leading contributions. K̃1,2,3 are
octet enhanced and come multiplied with factors of order
m4

K and K̃4,5,6,7 are 27-plets but also come multiplied with
factors of order m4

K . The neglected ones are thus suppressed
by either isospin breaking, factors of m2

π/m2
K or by the

∆I = 1/2 rule, i.e. an extra factor of G27/G8.

7.4.1 General fits

Here we perform the fits with similar assumptions as used
in the isospin limit fit, as well as a few additional ones.
First G8 and G27 are extremely correlated with the values
of K̃1 and K̃4 respectively. They are very difficult to obtain
separately without additional assumptions. The main fit
is therefore the one with

K̃1 = K̃4 = K̃8 = K̃9 = 0 , (55)

at a scale µ = 0.77 GeV. The results are given in Table 6.
This table is very similar to Table 6 in [9]. The large values
of K̃6 and the resulting large value of K̃7 have the same
origin as in that reference. In order to fit γS well, K̃6 is put
large because it gets multiplied there with a small factor
and is the only one contributing. This in turn leads large
values for K̃7 to compensate in other places.

The fit with
K̃6 = 0 (56)

in addition has only a slightly larger χ2 and a smaller K̃7.
The χ2 is larger than in [9] because the experimental errors
on several quantities have decreased since then. The overall
fit is slightly better than the one of [9] because the newer
measurements of the Dalitz distribution in K+ → π0π0π+

agree better with the chiral expressions.
We get fits of roughly similar quality for all values of

µ where the other parameters have been put to zero. The
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Table 4. The various decay widths from the PDG Tables [32], and our
results from the main fit and the best factorization fit

Decay Width [GeV] ChPT [GeV] Fact. [GeV]
K+ → π+π0 (1.1231 ± 0.0078) · 10−17 1.123 · 10−17 1.127 · 10−17

KS → π0π0 (2.2828 ± 0.0104) · 10−15 2.282 · 10−15 2.283 · 10−15

KS → π+π− (5.0691 ± 0.0108) · 10−15 5.069 · 10−15 5.069 · 10−15

KL → π0π0π0 (2.6748 ± 0.0358) · 10−18 2.618 · 10−18 2.698 · 10−18

KL → π+π−π0 (1.5998 ± 0.0271) · 10−18 1.658 · 10−18 1.711 · 10−18

K+ → π0π0π+ (9.195 ± 0.0213) · 10−19 8.934 · 10−19 8.816 · 10−19

K+ → π+π+π− (2.9737 ± 0.0174) · 10−18 2.971 · 10−18 2.933 · 10−18

Table 5. Experimental values and the main fit and best factorization fit
of the Dalitz plot distribution parameters. The data are from the PDG
Tables [32] except γS from [33]

Decay Quantity Experiment ChPT Fact.
KL → π0π0π0 h −0.0050 ± 0.0014 −0.0062 −0.0025
KL → π+π−π0 g 0.678 ± 0.008 0.678 0.654

h 0.076 ± 0.006 0.088 0.083
k 0.0099 ± 0.0015 0.0057 0.0068

KS → π+π−π0 γS (3.3 ± 0.5) · 10−8 3.0 · 10−8 2.9 · 10−8

K± → π0π0π± g 0.638 ± 0.020 0.636 0.648
h 0.051 ± 0.013 0.077 0.080
k 0.004 ± 0.007 0.0047 0.0069

K+ → π+π+π− g −0.2154 ± 0.0035 −0.215 −0.226
h 0.012 ± 0.008 0.012 0.019
k −0.0101 ± 0.0034 −0.0034 −0.0033

K− → π−π−π+ g −0.217 ± 0.007
h 0.010 ± 0.006
k −0.0084 ± 0.0019

fits tend to be slightly better for the larger values of µ.
The fitted values for the K̃i are µ-dependent, albeit not
extremely strongly.

The K̃i themselves have a µ-dependence which is given
by the cancellation of divergences, and this can be calcu-
lated from the known subtractions. We have shown the
variation with µ from µ = 0.77 GeV to µ = 0.6 GeV and
µ = 1.0 GeV for K̃i, i = 1, . . . , 11 in Table 7.

In order to compare with the factorization model of the
weak low energy constants, we also perform a fit where all
next-to-leading order LECs proportional to G27 are set to
zero, but we keep in addition the sub-leading octet ones.
This fit is shown for µ = 0.77 GeV in Table 7. The fit is
somewhat worse than those of Table 6 but not much. A
very similar fit is obtained for µ = 1 GeV with a χ2 of 29.9.
At µ = 0.6 GeV the best solution found had a χ2 of 57.8.
This fit corresponds to

K̃4 = K̃5 = K̃6 = K̃7 = 0 , (57)

and this type of fit is referred to below as an octet fit.

7.4.2 Fits to factorization and other models

Various models for the NLO weak constants exist. We will
discuss here some of the ones which are presented in [23].
These have been discussed in that reference only for the
pure octet case. So the quality of the models should be
compared with the octet fit above.

A first choice is the resonance exchange domination of
the weak constants. The problem here is that the weak
decays of the resonances involve themselves many new un-
measured parameters and thus leads to fairly few general
conclusions. If we assume that the vector octet exchange
dominates, we get a relation between the octet NLO con-
stants

Nr
1 + Nr

2 + 2Nr
3 = 0 , (58)

which is a combination we can in fact determine. It trans-
lates for our parameters into

K̃3 = − 1
2

K̃2 . (59)

It can be easily seen from Tables 6 and 7 that this is very
far from being satisfied by our fits.

A very often used model is the factorization model. It
corresponds to taking the underlying four quark operator
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Table 6. The results for G8 and G27 and the K̃i for the various constraints
described in the text. In brackets are the MINUIT errors. The K̃i are
quoted at the scale µ mentioned

Constraint (55) (55) (55) (55,56)
µ 0.77 GeV 1.0 GeV 0.6 GeV 0.77 GeV
G8 5.39(1) 4.60(1) 6.43(1) 5.39(1)
G27 0.359(2) 0.301(1) 0.438(2) 0.359(2)
δ2 − δ0 −57.9(1.5)◦ −57.3(1.4)◦ −58.9(1.4)◦ −57.9(1.4)◦

103K̃1/G8 ≡ 0 ≡ 0 ≡ 0 ≡ 0
103K̃2/G8 48.5(2.4) 56.5(2.4) 41.2(1.9) 46.6(1.6)
103K̃3/G8 2.6(1.2) −1.7(1.1) 6.7(1.0) 3.5(0.8)
103K̃4/G27 ≡ 0 ≡ 0 ≡ 0 ≡ 0
103K̃5/G27 −41.2(16.9) −52.0(17.7) −31.1(12.0) −27.0(8.3)
103K̃6/G27 −102(105) −114(105) −93(76) ≡ 0
103K̃7/G27 78.6(33) 78.0(33.5) 79.6(22.7) 50.0(13.0)
103K̃8/G8 ≡ 0 ≡ 0 ≡ 0 ≡ 0
103K̃9/G8 ≡ 0 ≡ 0 ≡ 0 ≡ 0
χ2/DOF 29.3/10 27.2/10 33.0/10 30.5/11

Table 7. The results for G8 and G27 and the K̃i for the octet
constraint described in the text. In brackets are the MINUIT
errors. The K̃i are quoted at the scale µ mentioned. The last
two columns are the values of the K̃i at the scale µ mentioned
when they are zero at µ = 0.77 GeV and run with G8 = 5.39
and G27 = 0.359

Constraint (57) µ variation µ variation
µ 0.77 GeV 1.0 GeV 0.6 GeV
G8 4.84(1) – –
G27 0.430(1) – –
δ2 − δ0 −57.9(0.2)◦ – –
103K̃1/G8 2.0(1) −5.88 5.61
103K̃2/G8 63.0(1.5) −2.69 2.57
103K̃3/G8 −6.0(7) 0.159 −0.152
103K̃4/G27 ≡ 0 −9.93 9.48
103K̃5/G27 ≡ 0 0 0
103K̃6/G27 ≡ 0 27.0 −25.8
103K̃7/G27 ≡ 0 −21.5 20.5
103K̃8/G8 20.4(1) −0.546 0.521
103K̃9/G8 9.1(1) −2.92 2.79
103K̃10/G8 ≡ 0 11.6 −11.1
103K̃11/G8 ≡ 0 −1.66 1.58
χ2/DOF 33.3/10 – –

and bosonizing separately the two quark currents present
there. Looking at the dominant octet operators only for
the cases that we need here, this leads to the relations [23]

Nr
1 = 2kf (32/3Lr

1 + 4Lr
3 + 2/3Lr

9) ,

Nr
2 = 2kf (16/3Lr

1 + 4Lr
3 + 10/3Lr

9) ,

Nr
3 = 2kf (8Lr

2 − 2Lr
9) ,

Nr
4 = 2kf (−16/3Lr

1 − 8/3Lr
3 − 4/3Lr

9) ,

Nr
5 = 2kf (−Lr

5) ,

Table 8. The results for the fit with the factorization assump-
tion for various values of µ including the optimal one

µ 0.77 GeV 0.9 GeV 0.842 GeV
G8 4.18(1) 4.42 4.22(1)
G27 0.360(2) 0.326(10) 0.339(10)
kF 2.61(1) 4.94(2) 3.60(5)
χ2/DOF 109/14 182/14 60.4/13

Nr
6 = 2kf (2/3Lr

5) ,

Nr
7 = 2kf (Lr

5) ,

Nr
8 = 2kf (4Lr

4 + 2Lr
5) ,

Nr
9 = Nr

10 = Nr
11 = Nr

12 = Nr
13 = 0 . (60)

The parameter kf allows for some overall adjustment. The
special valuekf = 1/2 is referred to as theweakdeformation
model (WDM) [23,34].Wehave performed afit leaving both
kf and µ free. Note that the scale µ is also the scale where
we have put all the other NLO parameters equal to zero.
The input values of the Lr

i have been scaled accordingly.
The fits done with kf , G8 and G27 as free parameters

have χ2 significantly larger than those reported above.
Some representative values are shown in Table 8.

The fit with µ free gave a minimum at µ = 0.842 GeV.
The fits with µ outside the range of Table 8 had very large
values of χ2.

In order to show the quality of the fits we have given in
Tables 4 and 5 also the values obtained for the quantities
from the main fit and best factorization fit, labeled ChPT
and Fact. respectively. Notice that the extrapolation to the
full phase space here has been done from the amplitude
squared in the center of the Dalitz plot using the experi-
mental values for the distribution over the Dalitz plot.
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8 Summary

We have recalculated in this paper the bremsstrahlung
amplitudes for K → 2πγ and K → 3πγ. In addition we
have calculated also the isospin violating effects to K → 2π
including those with the 27-operators both for effects due to
mu−md and electromagnetism.Thiswedid to be consistent
with the calculations of K → 3π done in [11,13].

We have checked explicitly that the infrared divergences
of the photon loops regulated by mγ cancel between the vir-
tual photon loops and the soft bremsstrahlung. We checked
in addition that the photon energy cut-off dependence can-
cels between the soft-photon bremsstrahlung part and the
part where hard photons are treated explicitly. We have not
included the explicit expressions for the K → 2π ampli-
tudes because they are rather long. They can be obtained
from the authors or [27]. These amplitudes have passed
all the standard tests, like cancellation of divergences from
both NLO ChPT as well as the infrared singularities.

With these calculations and those published earlier
in [11,13], we have updated the fit to the CP -conserving ob-
servables in the K → ππ(π)(γ) system done in the isospin
limit in [9]. As expected from the fairly small isospin violat-
ing effects found in [11,13] and from the analysis of isospin
breaking effects in the K → ππ(γ) system of [25], the dif-
ferences with the isospin conserving case are rather small.
In addition we have studied the dependences on the sub-
traction scale µ, where the various assumptions are made.
Our full amplitudes are µ-independent as they should.

The fits show a similar quality to the ones performed
earlier. The main differences are that the experimental
Dalitz parameters have changed in K+ → π0π0π+ and are
now in better agreement with the ChPT fits. This is purely
experimental and has nothing to do with the inclusion of
isospin breaking effects. The total χ2 is somewhat worse
because the experimental errors on various partial widths
have been reduced.

We also checked how well a few models of the NLO weak
low energy constants work. The dominance by vectors and
the weak deformation model gave a rather bad fit. The
factorization model gave a somewhat better fit when an
extra parameter, an overall scale factor, was allowed. The
quality of this compared to the optimal ChPT fits can be
judged from the tables giving the best fit values for the
experimental quantities directly.
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